Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26956, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495139

RESUMO

Computational Fluid Dynamics has become a very powerful tool for developing engineering combustion devices, such as burners and furnaces. However, there are a wide variety of turbulence models, and some of them have proven to be more effective for some turbulent flow configurations than others. A reacting turbulent jet is a common flow configuration found in combustion engineering devices like burners. The present work assesses Reynolds-Average Navier-Stokes turbulence models, being tested on a CH4/H2/N2-Air reacting jet. Eight two-equation eddy-viscosity and three five-equation turbulence models were tested in the studied turbulent flow. Computational results were compared against experimental measurements in terms of flow field variables, mean mixture fraction, temperature, and species mass fraction. The findings suggest a strong influence of the turbulence model perforce on the mean mixture fraction as well as on the turbulence-chemistry interaction model. The modified version of the standard k-ε model proves to be the more reliable choice for this reactive flow configurations. Specially, where the flow patterns of the jet dictate the general flow physics. Near the fuel nozzle, both the Reynolds stress model with stress baseline k-ω (RSM-SBSL) and the standard k-ω model exhibit better agreement with experimental data than the conventional modified k-ε model. Moreover, findings from the standard modified k-ε model indicate a significant underestimation of spreading rates for radial samples in regions where jet spreading intensifies.

2.
Environ Res ; 236(Pt 1): 116714, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482125

RESUMO

Accurately measuring particulate matter emissions from biomass combustion is crucial for evaluating the performance of fuels, combustion appliances and flue gas cleaning methods. These measurements are essential for refining emission inventories for health risk assessments and environmental models and for defining pollution control strategies. However, as air quality standards become increasingly stringent and emission levels decrease, it is important to develop reliable, accurate measurement methods. This study presents a comprehensive evaluation of two particulate dilution systems, namely a full flow dilution (FFD) tunnel and a two-stage partial flow dilution system (porous tube diluter combined with ejector diluter, PTD + ED), for characterising the particle number size distribution from a wood pellet boiler. The maximum relative sampling errors due to not sampling isokinetically increase with particle size and dilution ratio (DR), but are less than 1% for particles smaller than 1 µm for both systems. The total particle number concentration with FFD is on average 35% lower than with PTD + ED, which suggests substantial particle loss during FFD. In addition with FFD, a strong negative correlation is observed between DR and the average particle size. On the other hand with PTD + ED, both the dilution air temperature and DR have no substantial influence on the particle number emissions. However, it is observed with both systems that the particle distribution is affected by coagulation, and this effect becomes more pronounced as dilution decreases. Overall, this work provides insights into the strengths and limitations of particulate dilution systems for accurately measuring emissions from biomass combustion, which can support the development of more reliable measurement methods and assist in implementing effective pollution control strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Poluentes Atmosféricos/análise , Biomassa , Poluição do Ar/análise , Tamanho da Partícula , Carvão Mineral , Poeira , Madeira/química
3.
Waste Manag ; 102: 868-883, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31835064

RESUMO

Almost 500 municipal solid waste incineration plants in the EU, Norway and Switzerland generate about 17.6 Mt/a of incinerator bottom ash (IBA). IBA contains minerals and metals. Metals are mostly separated and sold to the scrap market and minerals are either disposed of in landfills or utilised in the construction sector. Since there is no uniform regulation for IBA utilisation at EU level, countries developed own rules with varying requirements for utilisation. As a result from a cooperation network between European experts an up-to-date overview of documents regulating IBA utilisation is presented. Furthermore, this work highlights the different requirements that have to be considered. Overall, 51 different parameters for the total content and 36 different parameters for the emission by leaching are defined. An analysis of the defined parameter reveals that leaching parameters are significantly more to be considered compared to total content parameters. In order to assess the leaching behaviour nine different leaching tests, including batch tests, up-flow percolation tests and one diffusion test (monolithic materials) are in place. A further discussion of leaching parameters showed that certain countries took over limit values initially defined for landfills for inert waste and adopted them for IBA utilisation. The overall utilisation rate of IBA in construction works is approximately 54 wt%. It is revealed that the rate of utilisation does not necessarily depend on how well regulated IBA utilisation is, but rather seems to be a result of political commitment for IBA recycling and economically interesting circumstances.


Assuntos
Cinza de Carvão , Incineração , Europa (Continente) , Noruega , Resíduos Sólidos , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...